THE REACTIONS OF HO WITH CH CH_{2} AND OF HCO WITH NO \mathbf{N}_{2}

BOYCE M. MORRISON, JR., and JULIAN HEICKLEN
Department of Chemistry, Ionosphere Research Laboratory and Center for Air Environment Studies, The Pennsylvania State University, University Park, Pa., 16802 (U.S.A.)
(Received September 17, 1979 ; in revised form December 11, 1979)

Summary

NO_{2} was photolyzed at 366 nm in the presence of $\mathrm{CH}_{2} \mathrm{O}$ at 296 K . Products of the reaction were CO and $\mathrm{CO}_{2} . \mathrm{H}_{2}, \mathrm{HCOOH}$ and $\mathrm{N}_{2} \mathrm{O}$ were not produced. The results establish that the reaction of HO with $\mathrm{CH}_{2} \mathrm{O}$ does not produce HCOOH , but there is evidence that about 50% of the HCO produced has sufficient excess energy to decompose spontaneously to H and CO. The reaction of HCO with NO_{2} has two major (and probably exclusive) pathways:

$$
\begin{align*}
\mathrm{HCO}+\mathrm{NO}_{2} & \rightarrow \mathrm{HCO}_{2}+\mathrm{NO} \tag{9c}\\
& \rightarrow \mathrm{HC}(\mathrm{O}) \mathrm{ONO} \text { or } \mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2} \tag{9e}
\end{align*}
$$

with $k_{9 \mathrm{gc}} / k_{9 e} \approx 1.14 \pm 0.13$ if $k_{3 \mathrm{bb}} / k_{3}=0$, or $k_{9 \mathrm{gc}} / k_{9 \mathrm{e}} \approx 0.99 \pm 0.13$ if $k_{\mathrm{sb}} / k_{\mathrm{B}} \approx$ 0.30 , where reactions (3) are

$$
\begin{align*}
\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CH}_{2} \mathrm{O} & \rightarrow \mathrm{HO}+\mathrm{HCO} \tag{3a}\\
& \rightarrow \mathrm{CO}_{2}+2 \mathrm{H} \tag{3b}
\end{align*}
$$

1. Introduction

Formaldehyde is present in polluted urban atmospheres and a complete understanding of its photooxidation is essential. There have been many recent studies involving the photooxidation of formaldehyde [1-5]. Formic acid has been observed as a product of $\mathrm{CH}_{2} \mathrm{O}$ oxidation [1, 4-9]. Several reactions have been postulated to explain its production. They include the reaction of HCO with O_{2} [1], the reaction of O_{2} with electronically excited $\mathrm{CH}_{2} \mathrm{O}$ or its isomer $\mathrm{H} \dot{\mathrm{C}} \mathrm{OH}$ [4], and the reactions of HO and HO_{2} with $\mathrm{CH}_{2} \mathrm{O}$ [2,5,9].

A main purpose of this study was to determine whether HO could react with $\mathrm{CH}_{2} \mathrm{O}$ to produce HCOOH directly. To do this HO was generated by photolyzing NO_{2} to produce $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms in the presence of $\mathrm{CH}_{2} \mathrm{O}$. The $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms abstracted a hydrogen atom from $\mathrm{CH}_{2} \mathrm{O}$ to produce HO and

HCO. Thus we were also able to study the reactions of HCO with NO_{2} to determine the importance of the various product pathways.

The thermal reaction of $\mathrm{CH}_{2} \mathrm{O}$ and NO_{2} was first studied by Pollard and Wyatt [10] and Pollard and Woodward [11]. In their work they found that CO and CO_{2} were produced in a ratio of about $3: 2$ at $154{ }^{\circ} \mathrm{C}$ [10] for a $2: 1\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]$ ratio. This value increased slightly with temperature. They found no evidence for HCOOH production. They proposed that an intermediate $\mathrm{CH}_{2} \mathrm{O} \cdot \mathrm{NO}_{2}$ reacted with NO_{2} to produce CO and CO_{2}. Thomas [12] has studied the thermal oxidation of glyoxal by NO_{2} at 160 $210^{\circ} \mathrm{C}$. In his article the results of Pollard and Wyatt [10] were explained by a different mechanism than the one originally proposed. This new mechanism included the reaction of HCO with NO_{2} to give the observed products, CO and CO_{2}, in a constant ratio.

Barton [13] has investigated the thermal oxidation of the various deuterated isotopes of formaldehyde with NO_{2} at $126^{\circ} \mathrm{C}$ and has found that the ratio of CO to CO_{2} produced decreased as the [NO]/[$\mathrm{CH}_{2} \mathrm{O}$] ratio increased above unity. He concluded "that (a) some fraction of the CO is formed from an intermediate without reaction of the intermediate with NO_{2} and (b) H abstraction is more important in the reaction controlling the rate of formation of CO than in the reaction controlling the rate of formation of CO_{2}."

2. Experimental

The experimental apparatus and the purification of $\mathrm{CH}_{2} \mathrm{O}$ and helium have been described previously [4]. The reaction vessel was a long-path IR cell vertically mounted in a Beckman model 10 IR spectrophotometer. Thus HCOOH production and NO_{2} decay could be monitored continuously by IR absorption spectroscopy during photolysis. The gases $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$ were measured by gas chromatography after the photolysis had been terminated.

A Corning O-52 filter was used to cut off radiation below 340 nm . This allowed the NO_{2} molecule to absorb radiation from the 366 nm line produced by a Hanovia 140 W medium pressure mercury lamp. At this wavelength no $\mathrm{CO}, \mathrm{CO}_{2}$ or H_{2} were observed when pure $\mathrm{CH}_{2} \mathrm{O}$ was irradiated. The quantum yield for the removal of NO_{2} in the absence of any added gases was taken to be 2. Actinometry was performed by monitoring the decay of the NO_{2} absorbance as a function of time.

The absorbance of NO_{2} was measured in two different ways during this study. Initially the IR spectrum of the mixture was taken at several intervals during a reaction. The absorbance and hence the pressure of NO_{2} could be determined from the spectrum. Subsequently an external recorder was connected to the IR spectrophotometer. This allowed the absorbance of NO_{2} to be monitored continuously during an experiment. In this way more accurate pressures of NO_{2} could be determined.
NO_{2} was purified by mixing 100 Torr of NO_{2} with 600 Torr O_{2}. The mixture was frozen at $-196{ }^{\circ} \mathrm{C}$ and then warmed to room temperature. This procedure was repeated until the blue color of $\mathrm{N}_{2} \mathrm{O}_{3}$ had disappeared and the frozen mixture was white. The NO_{2} was then distilled from - 63 to $-130{ }^{\circ} \mathrm{C}$.

3. Results

NO_{2} was photolyzed at 296 K with 366 nm radiation in the presence of $\mathrm{CH}_{2} \mathrm{O}$ and in the presence of $\mathrm{CH}_{2} \mathrm{O}$ and helium. The $\mathrm{CH}_{2} \mathrm{O}$ pressure was varied from 0.020 Torr to 5.62 Torr and the NO_{2} pressure ranged from 21.9 m'Torr to 388 mTorr . One series of reactions was performed at a constant $\mathrm{CH}_{2} \mathrm{O}: \mathrm{NO}_{2}$ pressure ratio with the helium pressure varying from 45 Torr to 750 Torr. In the dark no products formed, but the $\mathbf{C H}_{\mathbf{2}} \mathbf{O}$ disappeared slowly by polymerization. Also NO_{2} was present only as the monomer and no change in NO_{2} absorbance was observed.

The products measured were CO and CO_{2}. The loss of NO_{2} was also measured. Compounds not produced were $\mathrm{H}_{2}, \mathrm{HCOOH}$ and $\mathrm{N}_{2} \mathrm{O}$. These compounds would have been detected at quantum yields greater than $0.08,0.10$ and 0.06 respectively. From the absence of $\mathrm{N}_{2} \mathrm{O}$ it was concluded that no HNO was produced. $\mathrm{N}_{2} \mathrm{O}$ would have arisen from the reaction of HNO with itself. Because NO was difficult to analyze, its quantum yield was not determined for any of the experiments. In experiments with high NO_{2} and high $\mathrm{CH}_{2} \mathrm{O}$ pressures, a broad band between 700 and $800 \mathrm{~cm}^{-1}$ grew in the IR spectrum. This is the region of nitrite and nitrate absorption. The band is therefore tentatively assigned to a compound with the formula $\mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2}$ or $\mathrm{HC}(\mathrm{O}) \mathrm{ONO}$.

Tables 1 and 2 give the quantum yields for CO and CO_{2} production and for NO_{2} removal under various initial conditions. The quantities of interest for CO and CO_{2} are the measured quantum yields divided by the quantity ξ, which is the fraction of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms that react with $\mathrm{CH}_{2} \mathrm{O}$. The adjusted quantum yields are scattered about a mean value for most of the conditions used in these experiments. Figure 1 is a plot of $\Phi(\mathrm{CO}) / \xi$ versus $\log \left(\left[\mathrm{CH}_{\mathbf{2}} \mathrm{O}\right] /\right.$ $\left[\mathrm{NO}_{2}\right]$). The average value for $\Phi(\mathrm{CO}) / \xi$ is $3.12 \pm 0.53(1 \sigma)$. Figure 2 is a plot of $\Phi\left(\mathrm{CO}_{2}\right) / \xi$ versus $\log \left(\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]\right)$. The mean value is 2.28 ± 0.25 (1σ). When NO_{2} is in excess of $\mathrm{CH}_{2} \mathrm{O}$, the adjusted quantum yields of CO and CO_{2} are not in agreement with the average value. The small amounts of CO and CO_{2} produced under these conditions lead to large errors in measurement and the deviations are not considered meaningful.

The average value for $\Phi(\mathrm{CO}) / \Phi\left(\mathrm{CO}_{2}\right)$ of $1.37_{-0.35}^{+0.27}$ is in good agreement with the values found by Pollard and Wyatt [10] at higher temperatures. In fact Shaw [14] has shown that the data of Pollard and Wyatt give an activation energy of $650 \mathrm{cal} \mathrm{mol}^{-1}$ for the ratio. Thus, at 296 K their ratio would extrapolate to 1.07 which agrees with our value within experimental uncertainty.
TABLE 1
The photolysis of NO_{2} at 366 nm in the presence of $\mathrm{CH}_{2} \mathrm{O}$

10.5
12.0
9.3
8.7
8.1
16.3
8.5
11.5
8.1
9.1
8.7
8.3
11.0
8.8
11.0
12.1
か.

TABLE 2
The effect of total pressure on the photolysis of NO_{2} at 366 nm in the presence of $\mathrm{CH}_{2} \mathrm{O}$

[He]	[$\left.\mathrm{CH}_{2} \mathrm{O}\right]$	$\left[\mathrm{NO}_{2}\right]$	[$\mathrm{CH}_{2} \mathrm{O}$]	Irradiation		$\Phi(\mathrm{CO})$	$\Phi\left(\mathrm{CO}_{2}\right)$	$-\Phi\left(\mathrm{NO}_{2}\right)$	ξ	$\Phi(\mathrm{CO})$	$\Phi\left(\mathrm{CO}_{2}\right)$	$-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi$
(Torr)	[NO_{2}]	(mTorr)	(Torr)	time (h)	(mTorr ${ }^{-1}$)					ξ	ξ	ξ
44.5	92.4	53.9	4.98	6.0	0.492	2.30	1.53	6.0	0.610	3.77	2.51	7.6
95.0	93.6	52.9	4.95	6.0	0.476	1.54	1.32	8.6	0.605	2.55	2.19	12.0
145	91.1	53.9	4.91	6.0	0.492	2.24	1.46	9.1	0.599	3.73	2.44	13.0
200	93.6	54.9	5.14	8.0	0.507	2.15	1.26	7.9	0.605	3.56	2.08	11.0
250	110	50.9	5.62	6.0	0.444	2.48	1.23	8.1	0.643	3.85	1.92	10.0
300	96.1	51.9	4.99	5.0	0.460	2.01	1.13	8.4	0.612	3.28	1.85	11.0
400	87.1	55.9	4.87	6.0	0.523	1.95	1.41	5.5	0.588	3.32	2.40	9.4
600	95.1	52.9	5.03	6.0	0.476	2.10	1.45	6.9	0.609	3.45	2.38	9.1
750	88.3	57.3	5.06	6.0	0.545	1.69	1.20	10.0	0.591	2.86	2.03	14.0

The removal quantum yields of NO_{2} are adjusted in a slightly different manner than those for $\Phi(\mathrm{CO})$ or $\Phi\left(\mathrm{CO}_{2}\right)$ (see Section 4). The adjusted expression is $\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi$ and represents the NO_{2} loss as a result of the reaction of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms with $\mathrm{CH}_{2} \mathrm{O}$. These adjusted values are constant for a $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]$ ratio between 10 and 100 . Below a value of 10 the adjusted quantum yield tends to have more scatter, since $-\Phi\left(\mathrm{NO}_{2}\right)$ is close to $2-\xi$ and the difference has a large percentage uncertainty. Figure 3 is a plot of $\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi$ versus $\log \left(\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]\right)$. The mean value for $\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi$ is $10.4 \pm 1.8(1 \sigma)$. The mean values for the adjusted quantum yields are summarized in Table 3.

Fig. 1. A semilogarithmic plot of $\Phi(\mathrm{CO}) / \xi$ vs. $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]: O$, helium absent; Δ, helium present.

Fig. 2. A semilogarithmic plot of $\Phi\left(\mathrm{CO}_{2}\right) / \xi$ vs. $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]: 0$, helium absent; Δ, helium present.

Fig. 3. A semilogarithmic plot of $\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi$ us. $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]: 0$, helium absent; Δ, helium present.

TABLE 3
Summary of findings

Function	Value	Units
$\Phi(\mathrm{CO}) / \xi$	3.12 ± 0.53	None
$\Phi\left(\mathrm{CO}_{2}\right) / \xi$	2.28 ± 0.25	None
$\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi$	10.4 ± 1.8	None

4. Discussion

The $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms generated in the photolysis of NO_{2} react with both NO_{2} and $\mathrm{CH}_{2} \mathrm{O}$. Those which react with $\mathrm{CH}_{2} \mathrm{O}$ generate a chain reaction. The complete mechanism is given as follows. Most of the reactions are those postulated by earlier workers [2,12].

$$
\begin{array}{ll}
\mathrm{NO}_{2}+h \nu & \rightarrow \mathrm{NO}+\mathrm{O}\left({ }^{3} \mathrm{P}\right) \\
\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{NO}_{2} & \rightarrow \mathrm{NO}+\mathrm{O}_{2} \\
\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CH}_{2} \mathrm{O} & \rightarrow \mathrm{HO}+\mathrm{HCO} \\
& \rightarrow \mathrm{CO}_{2}+2 \mathrm{H} \tag{3b}
\end{array}
$$

$$
\begin{equation*}
\mathrm{HO}+\mathrm{CH}_{2} \mathrm{O} \quad \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}^{\neq} \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO} \tag{4b}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathbf{H C O O H}+\mathrm{H} \tag{4c}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{H C O}^{\neq} \quad \rightarrow \mathbf{H}+\mathbf{C O} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{HCO}^{\neq}+\mathrm{M} \quad \rightarrow \mathrm{HCO}+\mathrm{M} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}+\mathrm{NO}_{2} \quad \rightarrow \mathrm{HO}+\mathrm{NO} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}+\mathrm{CH}_{2} \mathrm{O} \quad \rightarrow \mathrm{H}_{2}+\mathrm{HCO} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{HCO}+\mathrm{NO}_{2} \rightarrow \mathrm{CO}+\mathrm{HO}+\mathrm{NO} \tag{9a}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathrm{CO}+\mathrm{HONO} \tag{9b}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathbf{H C O}_{2}+\mathrm{NO} \tag{9c}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathrm{HNO}+\mathrm{CO}_{2} \tag{9d}
\end{equation*}
$$

$\rightarrow \mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2}$ or $\mathrm{HC}(\mathrm{O}) \mathrm{ONO}$

$$
\begin{array}{ll}
\mathrm{HCO}_{2} & \rightarrow \mathrm{H}+\mathrm{CO}_{2} \\
\mathrm{HCO}_{2}+\mathrm{NO}_{2} & \rightarrow \mathrm{HO}+\mathrm{NO}+\mathrm{CO}_{2} \\
& \rightarrow \mathrm{HONO}+\mathrm{CO}_{2} \\
& \rightarrow \mathrm{HCO}_{2} \mathrm{NO}_{2} \\
2 \mathrm{HNO} & \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HO}+\mathrm{NO}_{2}+\mathrm{M} & \rightarrow \mathrm{HONO}_{2}+\mathrm{M} \tag{13}
\end{array}
$$

Here HCO^{\neq}is a vibrationally excited radical with enough energy to decompose spontaneously. Horowitz et al. [2] have given evidence that such a species is produced in the reaction of HO with $\mathrm{CH}_{2} \mathrm{O}$.

The complete mechanism leads to very complex rate laws. Fortunately, however, many simplifications can be made. As previously stated, one of the main purposes of this study was to determine whether HO could react with $\mathrm{CH}_{2} \mathrm{O}$ to produce HCOOH . The absence of HCOOH as a product eliminates reaction (4c). Likewise the absence of $\mathrm{N}_{2} \mathrm{O}$ as a product eliminates reactions (9d) and (12). Finally the failure to detect H_{2} eliminates reaction (8) as being important in this system. Reaction (8) is known to occur with a rate coefficient of $5.4 \times 10^{-14} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ at 297 K [15]. However, this reaction is too slow to compete with reaction (7) in our experiments since $k_{7}=1.13 \times$ $10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ at 298 K [15]. Thus even under the most favorable conditions for reaction (8), i.e. when $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]=110$, reaction (8) removes less than 0.05% of the hydrogen atoms.

Reactions (6) and (13) can be eliminated because there is no effect of adding even an atmosphere of helium. Thus if HCO^{\neq}is produced at all it decomposes 100% in our system. Further evidence that reaction (13) is unimportant comes from a comparison of rate coefficients. Since $k_{4}=$ $1.4 \times 10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ at $296 \mathrm{~K}[15]$ and $k_{13}=8.8 \times 10^{-31} \mathrm{~cm}^{6} \mathrm{~s}^{-1}$ in the presence of helium at 296 K [15], then even under the most favorable conditions, i.e. high [M] and low [$\left.\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]$, reaction (13) accounts for less than 1.8% of the removal of HO atoms. Thus if reaction (13) was the important terminating step, then the adjusted quantum yields would exceed 56 , contrary to observation. Consequently reaction (13) can be neglected.

Reactions (11) have not been postulated previously since HCO_{2} is believed to be unstable, as are the analogous RCO_{2} radicals. If reactions (11b) or (11c) occur, then reactions (11) must occur to the exclusion of reaction (10), since the results are independent of $\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left[\mathrm{NO}_{2}\right]$. (If only reaction (11a) occurs it makes no difference, since reaction (11a) is then kinetically indistinguishable from reaction (10) followed by reaction (7).) Thus even at $20 \mathrm{mTorr} \mathrm{NO}_{2}$, reactions (11), if they occur, must dominate reaction (10). Since k_{11} cannot exceed $2 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and probably would be at
least an order of magnitude smaller, k_{10} must be less than $1.3 \times 10^{5} \mathrm{~s}^{-1}$. The pre-exponential factor for k_{10} should exceed $10^{16} \mathrm{~s}^{-1}$, so that the activation energy required would be greater than $14.7 \mathrm{kcal} \mathrm{mol}^{-1}$, which would have to be less than the $\mathrm{H}-\mathrm{CO}_{2}$ bond dissociation energy. This is extremely unlikley and it can be concluded that reactions (11) are of no importance.

The only evidence for reaction (3b) is a recent finding [16] that it accounts for approximately 30% of the total reaction. It, and reaction (9 c) followed by reaction (10), are the only sources of CO_{2}.

Application of the steady state hypothesis on $\left.\mathrm{O}^{(}{ }^{3} \mathrm{P}\right), \mathrm{HO}, \mathrm{HCO}^{\neq}$, HCO, H and HCO_{2} to the simplified mechanism consisting of reactions (1), (2), (3a), (3b), (4a), (4b), (5), (7), (9a), (9b), (9c), (9e) and (10) leads to the following rate laws:

$$
\begin{align*}
& \Phi\left(\mathrm{CO}_{2}\right) / \xi=k_{\mathrm{gb}} / k_{3}+2 k_{9 \mathrm{c}} /\left(k_{9 \mathrm{~b}}+k_{9 \mathrm{~g}}\right) \tag{I}\\
& \Phi(\mathrm{CO}) / \xi=\frac{2\left(k_{9 \mathrm{a}}+k_{9 \mathrm{~b}}\right)}{\left(k_{9 \mathrm{~b}}+k_{9 \mathrm{e}}\right)}+\frac{k_{\mathrm{9a}}}{k_{4 \mathrm{~b}}}\left\{1+\frac{k_{\mathrm{gb}}}{k_{\mathrm{B}}}+\frac{2\left(k_{9 \mathrm{a}}+k_{9 \mathrm{c}}\right)}{\left(k_{9 \mathrm{~b}}+k_{9 \mathrm{~g}}\right)}\right\} \tag{II}\\
& \frac{\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\}}{\xi}=\frac{2 k_{3 \mathrm{~b}}}{k_{3}}+\frac{2\left(k_{9}+k_{9 \mathrm{c}}\right)}{k_{9 \mathrm{~b}}+k_{9 \mathrm{e}}}+\frac{k_{4 \mathrm{a}}}{k_{4 \mathrm{~b}}}\left\{1+\frac{k_{\mathrm{bb}}}{k_{3}}+\frac{2\left(k_{9 \mathrm{a}}+k_{9 \mathrm{c}}\right)}{\left(k_{9 \mathrm{~b}}+k_{9 \mathrm{e}}\right)}\right\} \tag{III}
\end{align*}
$$

where ξ is the fraction of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms that react with $\mathrm{CH}_{2} \mathrm{O}$ and is defined by

$$
\xi \equiv k_{3}\left[\mathrm{CH}_{2} \mathrm{O}\right] /\left(k_{2}\left[\mathrm{NO}_{2}\right]+k_{3}\left[\mathrm{CH}_{2} \mathrm{O}\right]\right)
$$

Thus the left-hand sides of eqns. (I) - (III) represent the adjusted quantum yields resulting only from the reactions of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ with $\mathrm{CH}_{2} \mathrm{O} . \mathrm{CO}_{2}$ and CO can only be produced via these reactions (reactions (3)) but, for NO_{2} removal, corrections for loss due to reactions (1) and (2) have to be taken into account. The quantity ξ can be computed for each run from the known rate coefficients which are $k_{2}=9.1 \times 10^{-12} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and $k_{3}=1.5 \times 10^{-13}$ $\mathrm{cm}^{3} \mathrm{~s}^{-1}$ at room temperature [15].

Equations (I) - (III) can be combined to give the following simpler and more useful expression:

$$
\begin{align*}
\phi & \equiv\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi-2 \Phi\left(\mathrm{CO}_{2}\right)-\Phi(\mathrm{CO})\right\} / \xi \\
& =2 k_{9 \mathrm{e}} /\left(k_{9 \mathrm{~b}}+k_{\mathrm{ge}}\right) \tag{IV}
\end{align*}
$$

The magnitude of ϕ is 2.72 ± 2.03 where the uncertainty is the sum of the uncertainties for $\left\{-\Phi\left(\mathrm{NO}_{2}\right)-2+\xi\right\} / \xi, \Phi(\mathrm{CO}) / \xi$ and twice that for $\Phi\left(\mathrm{CO}_{2}\right) / \xi$. Thus the uncertainty is grossly exaggerated. Since $2 k_{\mathrm{ge}} /\left(k_{\mathrm{gb}}+\right.$ $\boldsymbol{k}_{\text {9e }}$) cannot exceed 2.0 and since ϕ is not likely to be very much below 2.0, it can be concluded that reaction (9b) is unimportant and that reaction (9e) is the important terminating reaction.

Equations (I) and (II) now reduce to

$$
\begin{align*}
& \Phi\left(\mathrm{CO}_{2}\right) / \xi=2.28 \pm 0.25=k_{\mathrm{sb}} / k_{\mathrm{s}}+2 k_{\mathrm{gc}} / k_{9 \mathrm{e}} \tag{V}\\
& \Phi(\mathrm{CO}) / \xi=3.12 \pm 0.53=\frac{2 k_{9 \mathrm{a}}}{k_{9 \mathrm{e}}}+\frac{k_{4 \mathrm{a}}}{k_{4 \mathrm{~b}}}\left\{1+\frac{k_{\mathrm{3b}}}{k_{\mathrm{3}}}+\frac{2\left(k_{9 \mathrm{a}}+k_{\mathrm{gc}}\right)}{k_{9 \mathrm{e}}}\right\} \tag{VI}
\end{align*}
$$

Since $k_{3 b} / k_{3}$ cannot exceed 1.0 , and in fact is either 0 or approximately 0.30 , then reaction (9c) must be an important chain-propagating step and is the main source of CO_{2} in our system. Furthermore $k_{9 c} / k_{9 e}=1.14 \pm 0.13$ if $k_{3 \mathrm{~b}} / k_{3}=0$ or $k_{9 \mathrm{~g}} / k_{\mathrm{ge}} \approx 0.99 \pm 0.13$ if $k_{\mathrm{sb}} / k_{\mathrm{a}} \approx 0.30$.

A compound with the formula $\mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2}$ or $\mathrm{HC}(\mathrm{O}) \mathrm{ONO}$ has been postulated as a product in the chain-terminating reaction (9e). Topchiev et al. [17] have predicted that reaction (9) has two pathways. One is reaction (9c) followed by reaction (10). The other, which they felt would be dominant, is equivalent to reaction (9a) but proceeds through reaction (9e):

Because their experiments were performed at about 700 K , any intermediate compound may not have been stable. At room temperature the compound $\mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2}$ or $\mathrm{HC}(\mathrm{O}) \mathrm{ONO}$ may be stable enough to exist in the system studied in this work. The work of Pollard and coworkers [10,11], Thomas [12] and Barton [13] was carried out at elevated temperatures. None of these workers has reported the existence of $\mathrm{HC}(\mathrm{O}) \mathrm{NO}_{2}$ or $\mathrm{HC}(\mathrm{O}) \mathrm{ONO}$.

The CO must arise either from reaction (4a) or (9a) or from both. The results obtained here cannot distinguish amongst the possibilities, but there are other arguments which tend to favor reaction (4a) as being the important CO-producing step. These are the following.
(1) Reaction (9a) should not be important when reaction (9b) is not important, since both reactions have the same activated complex and reaction (9b) is energetically more favorable.
(2) Reactions (9a) and (9b) are unlikely since they require that NO_{2} must react with the hydrogen atom of HCO rather than with the radical site on the carbon atom. Reactions (9c) and (9e), both of which do occur, involve reaction at the radical site. The similar reaction of HO_{2} with NO_{2} occurs only at the radical site of HO_{2} and does not lead to hydrogen atom abstraction [18].
(3) There is evidence from the work of Horowitz et al. [2] that HCO^{\neq}is produced by the reaction of HO with $\mathrm{CH}_{2} \mathrm{O}$ and that it dissociates spontaneously.
(4) Barton [13] has concluded that, in the thermal reaction between NO_{2} and $\mathrm{CH}_{2} \mathrm{O}$, at least some of the CO must be produced in a reaction not involving NO_{2}.

If we make the likely assumption, based on these arguments, that reaction (9a) is negligible, then eqns. (V) and (VI) combine to give

$$
\begin{equation*}
\Phi(\mathrm{CO}) / \xi=\left(k_{4 \mathrm{a}} / k_{4 \mathrm{~b}}\right)\left\{1+\Phi\left(\mathrm{CO}_{2}\right) / \xi\right\} \tag{VII}
\end{equation*}
$$

so that $k_{4 n} / k_{4}=0.49_{-0.13}^{+0.16}$. This value is the upper limit that can be obtained from our data, but it is smaller than that reported by Horowitz et al. [2] who concluded that reaction (4a) was much more important than reaction (4b). However, their analysis may be questioned since they also concluded that reaction (4c) was important.

Acknowledgments

This work was supported by the National Science Foundation (through Grant No. ATM 76-83378) and by the Center for Air Environment Studies to whom we are grateful.

References

1 T. L. Osif and J. Heicklen, J. Phys. Chem., 80 (1976) 1526.
2 A. Horowitz, F. Su and J. G. Calvert, Int. J. Chem. Kinet., 10 (1978) 1099.
3 G. K. Moortgat and P. Warneck, J. Chem. Phys., 70 (1979) 3639.
4 B. M. Morrison, Jr., and J. Heicklen, J. Photochem., 11 (1979) 183.
5 F. Su, J. G. Calvert and J. H. Shaw, J. Phys. Chem., 83 (1979) 3185.
6 J. E. Carruthers and R. G. W. Norrish, J. Chem. Soc., (1936) 1036.
7 E. C. A. Horner and D. W. G. Style, Trans. Faraday Soc., 50 (1954) 1197.
8 E. C. A. Horner, D. W. G. Style and D. Summers, Trans. Faraday Soc., 50 (1954) 1201.

9 F. Su, J. G. Calvert, J. H. Shaw, H. Niki, P. D. Maker, C. M. Savage and R. D. Breitenbach, Chem. Phys. Lett., 65 (1979) 221.
10 F. H. Pollard and R. M. H. Wyatt, Trans. Faraday Soc., 45 (1949) 760.
11 F. H. Pollard and P. Woodward, Trans. Faraday Soc., 45 (1949) 767.
12 J. H. Thomas, Trans. Faraday Soc., 49 (1953) 630.
13 D. Barton, J. Phys. Chem., 65 (1961) 1831.
14 R. Shaw, J. Chem. Soc., (1964) 1517.
15 R. F. Hampson, Jr., and D. Garvin, Reaction rate and photochemical data for atmospheric chemistry - 1977, Natl Bur. Stand. (U.S.) Spec. Publ., 513 (1977).
16 J. S. Chang and J. R. Barker, J. Phys. Chem., 83 (1979) 3059.
17 A. V. Topchiev, A. P. Ballod, T. V. Ferdorova and V. Ya. Shtern, Pet. Chem. USSR, 2 (1962) 150.

18 R. Simonaitis and J. Heicklen, Int. J. Chem. Kinet., 10 (1978) 67.

